Telegram Group & Telegram Channel
Верно ли, что классический градиентный спуск всегда найдёт глобальный минимум функции потерь и выдаст оптимальные параметры?

Нет, неверно.

Градиентный спуск эффективно работает на выпуклых функциях. В этом случае любой локальный минимум автоматически является глобальным. Однако без выпуклости данный метод оптимизации ничего не гарантирует. При этом невыпуклые функции встречаются повсеместно, в том числе в машинном обучении.

Нередко при обучении градиентный спуск застревает в локальном минимуме и не может найти глобальный. Это означает, что найденное решение может не быть оптимальным. Для того, чтобы снизить вероятность такого исхода, применяются разные техники. Однако 100-процентной гарантии не дают и они.

К вышеуказанным техникам относятся:
▫️выбор удачных начальных параметров;
▫️модификации градиентного спуска (стохастический градиентный спуск (SGD), градиентный спуск с моментом и др.).

#машинное_обучение



tg-me.com/ds_interview_lib/277
Create:
Last Update:

Верно ли, что классический градиентный спуск всегда найдёт глобальный минимум функции потерь и выдаст оптимальные параметры?

Нет, неверно.

Градиентный спуск эффективно работает на выпуклых функциях. В этом случае любой локальный минимум автоматически является глобальным. Однако без выпуклости данный метод оптимизации ничего не гарантирует. При этом невыпуклые функции встречаются повсеместно, в том числе в машинном обучении.

Нередко при обучении градиентный спуск застревает в локальном минимуме и не может найти глобальный. Это означает, что найденное решение может не быть оптимальным. Для того, чтобы снизить вероятность такого исхода, применяются разные техники. Однако 100-процентной гарантии не дают и они.

К вышеуказанным техникам относятся:
▫️выбор удачных начальных параметров;
▫️модификации градиентного спуска (стохастический градиентный спуск (SGD), градиентный спуск с моментом и др.).

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/277

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Библиотека собеса по Data Science | вопросы с собеседований from cn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA